Le problème du consommateur est le problème type de la microéconomie: un individu rationnel effectuant un choix dans un ensemble de choix délimité et cela, de manière à poursuivre un objectif.
L'individu type dont nous allons étudier les choix est le consommateur.
Son problème est simple : il doit choisir un seul élément parmi un ensemble d'objets.
Dans le cas du consommateur, est l'espace des paniers de consommation qui est modélisé comme un sous-espace de quand est le nombre de biens distincts dans l'économie.
Si est un panier de consommation.
Quand il est confronté à deux paniers et , les goûts du consommateur vont se traduire par un classement entre ces deux paniers.
S'il nous déclare que est mieux que nous dirons qu'il préfère strictement à et nous le notons par .
Confronté à deux paniers quelconque et , il peut se trouver dans une des quatre situations suivantes:
Nous allons éliminer la quatrième possibilité qui pose un problème de cohérence.
La cohérence minimale que nous exigeons de notre agent doit être complétée par une capacité d'évaluation minimale.
Si notre agents sait classer deux paniers et , il doit pouvoir classer un troisième panier par rapport aux deux premiers.
Cette hypothèse implique que si alors notre consommateur doit pouvoir dire pour le panier que soit ou soit ou soit les deux.
L'hypothèse précédente exclut que le consommateur nous déclare qu'il ne peut faire ce choix difficile.
Ces deux hypothèses impliquent d'autres propriétés naturelles des préférences strictes:
Ces deux hypothèses forment les bases de la théorie des choix en microéconomie.
Mais le classement des biens que nous avons considéré correspond
uniquement à une préférence forte du consommateur entre deux
paniers quelconques et en cela, il ne peut s'appliquer qu'à assez peu de
couple de paniers.
Pour élargir ce classement considérons deux relations complé men taires à celle-ci:
La proposition suivante regroupe les propriétés de la préférence stricte, la manière dont la préférence faible et l'indifférence sont dérivées de la préférence stricte et leurs propriétés impliquées par celles de la préférence stricte.
L'ensemble des relations de préférence du consommateur nous donne maintenant une bonne représentation de ses goûts et du classement que ces goûts impliquent entre les paniers de bien.
Nous pouvons alors commencer à nous intéresser à ses choix.
En général notre consommateur aura à choisir dans un ensemble de paniers de biens qui contient plus que deux éléments.
Comment ses préférences vont se traduire en choix?
Donc cet ensemble contient les éléments de pour les quels il n'existe pas d'alternatives strictement meilleures dans
Cet ensemble des alternatives acceptables traduit donc les préférences du consommateur en choix.
Il faut admettre qu'il est loin d'être aisé à manipuler car il fait une représentation des préférences sous la forme d'un ensemble.
Il serait plus commode d'avoir une représentation de ces préférences soit la forme d'une fonction numérique.
Si possède une représentation numérique, alors les alternatives acceptables d'un sous-ensemble de sont les éléments pour les quels possède la valeur la plus élevée (l'utilité maximale).
Mais est-ce que possède toujours une représentation numérique?
Il faut en fait plus que cela : soit doit être relativement petit, soit doit être bien formée.
(Debreu(1954) démontre le Théorème de représentation)
Supposons que admet une représentation numérique . est-il unique?
Soit une fonction strictement croissante.
Alors , représente tout aussi bien puisque induit le même classement des éléments de que et donc que .
Par conséquent, les représentations numériques de sont uniques à une transformation monotone croissante près (utilité ordinale et non cardinale).
Jusqu'à maintenant, nous avons adopté une approche très générale du problème de choix.
Nous allons maintenant nous focaliser sur le choix du consommateur, dans l'espace des paniers de biens.
Quelles sont, par exemple, le hypothèses qui donnent lieu à une représentation aussi lisse que sur la Figure 1.1?
représente l'espace des paniers de biens et donc où est le nombre de biens dans l'économie et la quantité des biens dans tout est non-négative.
Les préférences du consommateur sont données et elles sont asymétriques et négativement transitives.
Nous pouvons alors commencer à reconstruire la Figure 1.1.
Pour tout nous définissons la classe d'indifférence de comme étant
Étant donné que est réflexive, transitive et symétrique, les classes d'indifférence , pour parcourant partitionnent complètement
Par conséquent, chaque appartient à une seule classe d'indifférence.
Ces classes de la relation de préférence implicite du consommateur correspondent aux courbes d'indifférence de la Figure 1.1.
Quelles sont les autres propriétés qu'on peut raisonnablement attendre de ?
Comment doit-on les traduire en termes de la représentation numérique ou en termes graphiques, comme pour la Figure 1.1?
Il est raisonnable de supposer que dans beaucoup de situations le consommateur va préférer avoir plus de bien que moins ou, du moins, qu'il ne préfère pas strictement le moins à plus.
( et sont des comparaison élément par élément des deux vecteurs)
La propriété fondamentale qui découle de celles-ci est la non-saturation : pour tout panier il existe un autre panier arbitrairement proche de celui-ci et qui est strictement préféré à lui.
Une autre manière d'énoncer cette propriété est d'utiliser l'ensemble des paniers faiblement préférés à que nous notons par :
En ce qui concerne les conséquences de la convexité sur la représentation numérique, nous devons procéder à la définition d'un certain nombre de notions qui sont fondamentales en microéconomie.
Nous avons mis en place tous les outils pour représenter les goûts du consommateur.
Nous pouvons donc nous intéresser plus directement à son problème de choix.